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Abstract— Efficient scheduling of courier packages is an 

essential part in modern logistics but remains challenging due to 

limitations such as vehicle capacity and tight delivery deadlines. 

Conventional approaches often fail to sufficiently balance these 

factors, resulting in inefficiencies and higher operational costs. 

Efficient scheduling can be applied by using Dynamic 

Programming, Greedy, and Branch and Bound Algorithm to 

enhance courier scheduling within these constraints. Their 

effectiveness is assessed through simulations on various datasets, 

focusing on scalability, solution quality, and computational 

demands. 
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I.  INTRODUCTION 

In recent years, the logistics and courier delivery segment 
has seen rapid growth, driven by the expanding dependence on 
e-commerce and computerized retail. With the surge in online 
transactions, courier companies are expected to deliver a 
massive number of packages each day under strict time 
constraints. The complexity of the issue increases when each 
delivery must not only meet a due date but also consider the 
capacity limitations of the available vehicles. Efficient 
scheduling of courier deliveries where each package has a goal, 
deadline, and size thus becomes a critical issue to solve, 
especially as failure to do so can lead to late deliveries, 
underutilized armadas, and increased operational costs.  

Courier scheduling tasks fall under the broader umbrella of 
combinatorial optimization issues, where a solution must be 
chosen from a limited but extremely huge set of possibilities. 
Such issues are typically NP-hard in nature, meaning that 
finding the exact optimal solution within a reasonable time 
frame is computationally expensive, especially as the number 
of deliveries and constraints increase. To overcome this, 
various algorithmic strategies have been proposed that attempt 
to supply optimal or near-optimal solutions efficiently. 

This paper proposes three approaches to optimizing the 
courier’s revenue by applying Dynamic Programming (DP), 
Greedy, and Branch and Bound (B&B) algorithms. Each has 
different strengths and weaknesses depending on the nature of 
the problem.  

Dynamic Programming provides a more structured and 
reliable way to solve optimization problems that exhibit 
optimal substructure and overlapping subproblems with two 
key properties in many scheduling scenarios. By solving 
smaller subproblems and storing their solutions, DP avoids 
redundant computations and ensures optimal results for certain 
classes of problems. In the context of courier scheduling, it can 
be used to determine the best combination of packages that 
maximize delivery within capacity and time limits[1]. 

Branch and Bound is an algorithm that systematically 
explores all possible configurations of solutions using a tree 
structure. It evaluates partial solutions and prunes branches of 
the tree that cannot possibly lead to better outcomes than the 
current best. While this method is capable of finding the 
optimal solution, its performance is highly dependent on the 
quality of the bounding and branching strategies used. For 
large problem sizes, it can become computationally intensive, 
although it guarantees correctness where heuristic or greedy 
methods may fail[2]. 

These different characteristics become essential to analyse 
which approach is most appropriate under what conditions. 
This paper focuses on implementing and comparing these three 
algorithms Dynamic Programming, Greedy, and Branch and 
Bound for solving a constrained courier package scheduling 
problem, where each delivery has a specific deadline and size, 
and each courier has limited capacity. The goal is to determine 
how each algorithm performs in terms of solution quality, 
execution time, and scalability, and to explore the trade-offs 
between computational cost and scheduling effectiveness in 
realistic delivery scenarios. 
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II. LIMITATION 

This paper has several limitations that should be 
acknowledged. Due to the computational complexity of 
Dynamic Programming and Branch and Bound algorithms, the 
implementation is limited to handling only a single delivery 
trip. Supporting multiple trips would extremely expand the 
solution space and lead to excessive processing time. As a 
result, the number of packages was restricted to 25 to maintain 
reasonable performance. Additionally, the dataset used in this 
paper is entirely synthetic and based on simulations, not 
derived from real-world logistics operations, which may limit 
the external validity of the results. The scheduling is also 
confined to a working hour range from 08:00 to 18:00, with a 
maximum vehicle load capacity of 20 kg. These constraints 
reduce the scalability and practical applicability of the 
proposed method in more complex and realistic delivery 
settings.  

III. THEORITICAL BASIS 

A. Dynamic Programming 

Dynamic programming is a problem-solving method that 
works by breaking down the solution into a series of stages. 
Each stage represents a step in the decision-making process, 
where the overall solution is viewed as a sequence of 
interconnected decisions. The term “program” in this context 
has no relation to computer programming. The word 
“dynamic” refers to the use of tables, often growing 
incrementally to store computed results and optimize the 
calculation process. Dynamic programming is particularly 
useful for solving optimization problems, whether they involve 
maximization or minimization objectives. In these problems, 
the solution typically involves evaluating multiple possible 
sequences of decisions.[3] 

An optimal sequence of decisions in dynamic programming 
is derived based on the Principle of Optimality, which states 
that if a total solution is optimal, then any part of that solution 
leading up to a certain stage must also be optimal. This 
principle allows computations to move forward efficiently: 
when progressing from stage k to stage k+1, the algorithm can 
use the optimal results of stage k without having to recompute 
earlier stages. The cost at stage k+1 is defined as the cost 
obtained at stage k, plus the cost of transitioning from stage k to 
stage k+1 (denoted as cₖ,ₖ₊₁).[3] 

Dynamic programming is widely applied in various fields 
to solve complex problems efficiently. Some prominent 
examples include determining the shortest path in a graph, 
solving the Integer Knapsack Problem to maximize value 
underweight constraints, addressing Capital Budgeting 
problems for optimal investment decisions under limited 
budgets, and tackling the Travelling Salesperson Problem 
(TSP), which aims to find the shortest possible route that visits 
a set of cities exactly once and returns to the origin. These 
problems share key characteristics such as overlapping 
subproblems and optimal substructure that make them well-
suited to dynamic programming techniques.[4] 

There are several characteristics of problems that are 
solvable with Dynamic Programming:  

1. The problem can be divided into multiple stages, with 
only one decision made at each stage. 

2. Each stage contains several states associated with that 
stage. Generally, a state represents the possible input 
configurations at a stage. 

3. The result of the decision taken at a stage transforms 
the current state into a state at the next stage. 

4. The cost at each stage increases steadily with the 
number of stages. 

5. The cost at a given stage depends on the cumulative 
cost of the preceding stages and the cost of moving to 
the next stage. 

6. There is a recursive relationship that determines the 
best decision for each state at stage k, which yields the 
best decision for each state at stage k+1. 

7. The principle of optimality applies to the problem.[3] 

Dynamic programming has two general approaches: 
forward (or top-down) and backward (or bottom-up). In the 
forward approach, calculations are performed starting from 
stage 1, progressing through stages 2, 3, and so on up to stage 
n. The decision variables in this sequence are represented as x₁, 
x₂, ..., xₙ. In the backward approach, the algorithm starts from 
the final stage and moves in reverse order: from stage n to n–1, 
n–2, and eventually to stage 1. The sequence of decision 
variables in this case is xₙ, xₙ₋₁, ..., x₁.[3] 

To solve a solvable problem, there are a few steps in 
developing Dynamic Programming Algorithm: 

1. Characterize the structure of the optimal solution that 
identify the stages, decision variables, states, etc. 

2. Define the value of the optimal solution recursively 
that express the optimal value of a stage in terms of the 
previous stages. 

3. Compute the optimal value either forward or backward 
that use a table to store intermediate results. 

4. Reconstruct the optimal solution (optional) to perform 
a backward trace to identify the decision path taken.[3] 

B. Greedy Algorithm 

The greedy algorithm is one of the most popular and 
straightforward methods for solving optimization problems. 
This algorithm is typically used to find optimal solutions in 
such problems, which can be classified into two types: 
maximization and minimization. The greedy algorithm solves 
problems in a step-by-step manner by selecting the best option 
available at each stage without considering future 
consequences (following the principle of “take what you can 
get now!”), with the hope that choosing a local optimum at 
every step will ultimately lead to a global optimum.[5] 

There are several elements of Greedy Algorithm: 

1. Candidate set (C) that contains the potential candidates 
to be selected at each step (e.g., nodes/edges in a 
graph, jobs, tasks, coins, items, characters, etc.). 
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2. Solution set (S) that consists of candidates that have 
already been selected to form the current solution. 

3. Solution function that determines whether the current 
set of selected candidates forms a complete and valid 
solution. 

4. Selection function that chooses the next candidate to 
add to the solution based on a specific greedy strategy. 
This strategy is heuristic in nature. 

5. Feasibility function that checks whether a selected 
candidate can be feasibly added to the solution set (i.e., 
whether it satisfies the problem's constraints). 

6. Objective function that defines the goal to be 
optimized either maximized or minimized.[5] 

It’s important to note that greedy algorithms generally 
produce locally optimal solutions, which do not always 
guarantee globally optimal results. In many cases, the solution 
may only be sub-optimal or even a pseudo-optimum. This 
happens for several reasons. First, greedy algorithms do not 
exhaustively explore all possible solutions like exhaustive 
search methods do. Second, there may be multiple selection 
functions available for a given problem, and choosing the 
correct one is crucial for achieving an optimal solution.[5] 

As a result, greedy algorithms may not always yield the 
best possible outcome for every problem. However, they are 
often valuable for finding approximate solutions, especially 
when an exact solution would require exponential computation 
time. While a greedy approach may not find the absolute 
minimum-weight tour, it can still produce a reasonably good 
approximation of the optimal solution. In cases where the 
greedy algorithm does provide an optimal solution, its 
optimality must be proven mathematically. This can be 
challenging, and in many situations, it is easier to demonstrate 
that a greedy algorithm is not always optimal by providing a 
counterexample that a specific case where the solution it 
produces is clearly not the best.[5] 

Greedy algorithms are widely used to solve various 
optimization problems. Common examples include the coin 
exchange problem, activity selection, and minimizing time in a 
system. They are also applied to the knapsack problem, job 
scheduling with deadlines, minimum spanning tree, shortest 
path, Huffman coding, and the Egyptian fraction problem. 
These problems benefit from greedy strategies that make 
locally optimal choices in hopes of finding an efficient overall 
solution.[5] 

C. Branch and Bound Algorithm 

The Branch and Bound (B&B) algorithm is used for 
solving optimization problems, either to minimize or maximize 
an objective function without violating any of the given 
constraints. Conceptually, Branch and Bound can be viewed as 
a combination of Breadth-First Search (BFS) and least-cost 
search. In pure BFS, the next node to be expanded is chosen 
based on the order in which it was generated (i.e., using a FIFO 
queue). However, in Branch and Bound, each node is assigned 
a cost value, denoted as ĉ(i), which represents an estimate of 
the minimum possible path cost to a goal node passing through 

node i. The next node selected for expansion is not based on 
generation order, but rather the node with the smallest 
estimated cost which is the essence of the least-cost search in 
the context of minimization problems.[6] 

In solving optimization problems, each node in the state-
space tree must have a mechanism to determine a bound on the 
best possible value of the objective function for any potential 
solution formed by extending the partial solution represented 
by that node. This includes keeping track of the best solution 
value found so far, to compare against new candidates.[6] 

Branch and Bound also incorporate pruning techniques to 
discard paths that are unlikely to lead to an optimal solution. In 
general, pruning is applied when a node’s cost is worse than 
the best-known solution, when the node violates problem 
constraints, or when the node represents a complete solution (a 
leaf node) but offers a worse outcome than the current best. In 
such cases, the node is eliminated from further consideration.[7] 

In most real-world problems, the exact location of the 
solution node is unknown. Some problems where the solution 
location is better defined include the N-Queens problem, 
Knapsack problem, Graph Coloring, 8-puzzle game, and 
Travelling Salesperson Problem (TSP). For such cases, the cost 
or bound ĉ(i) of a node i serves as a heuristic estimate of the 
cheapest cost to reach a solution from node i. This estimate, 
ĉ(i), represents the lower bound of the cost required to 
complete a solution from that state. Branch and Bound has 
been effectively applied in a variety of problems, such as the 
N-Queens problem, 15-puzzle, Travelling Salesperson Problem 
(TSP), Assignment Problem, and Integer Knapsack Problem. 
[6,7,8,9] 

There are a few steps to use Branch and Bound Algorithm: 

1. Start from the root node. If the root node is a solution, 
stop. The solution has been found. 

2. If there are no live nodes left, terminate the process (no 
solution found). 

3. Select a live node with the smallest cost bound (ĉ) as 
the next node to expand. If there are multiple nodes 
with equal cost, choose one arbitrarily. 

4. If the selected node is a solution node, compare its 
objective function value with the best solution found so 
far. If it is better, update the best solution. If only one 
solution is needed, stop. 

5. If the selected node is not a solution, generate all of its 
children (expanding the node). 

6. For each child node, compute its cost bound ĉ, and 
mark it as a live node. 

7. Return to Step 2. [6] 

Notes: The "live nodes" are typically maintained in a list or 
priority queue sorted by cost, but the algorithm itself 
doesn't prescribe a specific data structure, this depends on 
implementation. Pruning is applied to eliminate nodes 
whose cost bound is worse than the best solution found so 
far or that violate constraints. [6] 
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D. The Differences Between Dynamic Programming (DP), 

Greedy, and Branch and Bound (B&B) Algorithm 

TABLE I.  THE DIFFERENCES BETWEEN DYNAMIC PROGRAMMING (DP), 
GREEDY, AND BRANCH AND BOUND (B&B) ALGORITHM 

Aspect DP Greedy B&B 

Problem 

Type 

Optimization 

with overlapping 

subproblems and 
optimal 

substructure 

Optimization 

with greedy-

choice property 
and optimal 

substructure 

Optimization 

(esp. 

combinatorial 
and constrained) 

Approach Bottom-up or 
top-down with 

memoization 

Step-by-step, 
always takes 

locally optimal 

choice 

Tree-based 
search with 

pruning and 

bounding 

Solution 
Guarantee 

Always finds 
optimal solution 

(if correctly 

applied) 

Often 
approximate; 

not always 

optimal 

Guaranteed to 
find optimal 

solution (with 

full exploration 
or correct bound) 

Exploration 

Strategy 

Exhaustive (but 

optimized via 
memoization) 

Single path (no 

backtracking) 

Selective 

exploration 
based on best 

bound (e.g., best-

first search) 

Subproblem 
Reuse 

Yes No No 

Constraint 

Handling 

Limited, usually 

assumes relaxed 
constraints 

Limited, must 

fit greedy 
criteria 

Strong – handles 

constraints 
explicitly 

Speed Fast 

(polynomial) for 
suitable 

problems 

Very fast (linear 

or greedy-
specific) 

Slower – may be 

exponential in 
worst case 

Space 

Usage 

Can be high 

(stores table of 
subproblems) 

Low Moderate to high 

(stores tree 
nodes + bounds) 

E. Package 

A package refers to a specific quantity of goods prepared 
for shipment. Rather than being transported individually, items 
are grouped together using loading platforms such as pallets, 
crates, wire mesh containers, or roller cages to form a single 
unit. Each package typically requires its own shipping 
document and is assigned a unique identifier for tracking and 
tracing throughout the delivery process. In real-world 
applications, the term package is often used interchangeably 
with parcel or packet. Using external packaging and handling 
aids, multiple individual packaging units can be consolidated 
into a complete package. In this context, the package also 
functions as the shipping unit.[10] 

F. Courier 

Based on Cambridge Dictionary Online, courier is a person 

or company that takes messages, letters, or parcels from one 

person or place to another.[11] 

G. Scheduling 

Based on Cambridge Dictionary Online, scheduling is the 

job or activity of planning the times at which particular tasks 

will be done or events will happen such as 

production/work/crew scheduling.[12] 

IV. METHODOLOGY 

A. Data Sample 

The dataset used in this study is synthetically generated and 
formatted in JSON to simulate a controlled yet realistic packet 
delivery scenario. It comprises 25 distinct delivery entries, 
deliberately limited in size to accommodate the computational 
complexity of the algorithms applied namely, Dynamic 
Programming (DP) and Branch and Bound (B&B). Both 
techniques are known for their ability to solve optimization 
problems effectively, but they come with substantial 
computational overhead, especially as the problem size grows. 
Dynamic Programming requires building and maintaining large 
state tables, while Branch and Bound involves exploring a 
potentially large solution space with bounding and pruning 
operations. Therefore, a dataset size of 25 was chosen as a 
practical upper limit to ensure that algorithm performance 
could be analyzed within reasonable runtime and resource 
constraints, without sacrificing the complexity needed for 
meaningful evaluation. 

Each data entry is uniquely identified by a packet_id and 
contains several key fields relevant to delivery operations. The 
weight_in_kg ranges from 0.5 kg to 15 kg, reflecting realistic 
load variations. The deadline_time spans from 08:00 to 18:00, 
simulating typical same-day delivery windows. Packet sizes are 
classified as small, medium, or large, which influence the 
estimated_time_in_minute required for delivery—10 minutes 
for small packets, 15 for medium, and 20 for large ones. 
Additionally, each packet is assigned a destination_address, 
which consists of randomly generated addresses within the 
Dago area of Bandung, emphasizing a localized delivery 
scenario ideal for route planning and schedule optimization. 
This structured and semantically rich dataset supports detailed 
experimentation on time-constrained delivery scheduling, 
vehicle load balancing, and the effectiveness of the selected 
algorithms in addressing logistics challenges under controlled 
conditions. 

TABLE II.  PACKET.SON’S PREVIEW 

JSON’s Preview 

[ 
  { 

    "packet_id": "PKT001", 

    "weight_in_kg": 7.35, 
    "deadline_time": "16:30", 

    "size": "medium", 

    "estimated_time_in_minute": 15, 
    "destination_address": "Jl. Teuku Umar No.12, Dago" 

  }, 

  // ... (23 additional data entries omitted for brevity) ... 
  { 

    "packet_id": "PKT025", 

    "weight_in_kg": 2.30, 
    "deadline_time": "17:30", 

    "size": "small", 

    "estimated_time_in_minute": 10, 
    "destination_address": "Jl. Pagergunung No.30, Dago" 

  } 

] 

This table displays the structure and key attributes of the 
packet.json the data used in this study. For full dataset details, 
please refer to folder data at GitHub Repository. 
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B. Problem Modeling 

1. Dynamic Programming (DP) 

Step 1 (Characterize the Optimal Solution).  

The solution is modeled by representing each 

delivery combination as a bitmask. States represent 

subsets of delivered packets, and decision variables 

involve selecting which packet to add next. 

Constraints like weight limit and delivery deadlines 

define feasible transitions. 

Step 2 (Define the Recursive Relation). 

A DP table dp[mask] is initialized where each entry 

holds (completion_time, total_weight) for a given 

subset of packets. The base case (dp[0]) is set to the 

start of the delivery time. Other states are built by 

extending smaller subsets and updating values based 

on feasibility and improvement. 

Step 3 (Compute Using Table Iteration). 

The algorithm iterates through all subsets (mask) and 

their possible additions. It checks constraints (weight, 

deadline, total time) and updates dp[mask] if a better 

completion time or efficiency is achieved. This uses a 

bottom-up approach to reuse previously computed 

results. 

Step 4 (Reconstruct the Optimal Solution). 

After computing all values, the algorithm finds the 

best subset (best_mask) with the highest delivery 

value. It then traces back to identify the packets 

involved. The output includes delivery count, weight, 

time, and total revenue. 

 

2. Greedy Algorithm 

Step 1 (Define Candidate Set). 

The candidate set (C) is the initial collection of all 

available packets (packets), which are potential 

elements to be selected and considered for the 

solution. 

Step 2 (Initialize Solution Set). 

The solution set (S), represented by selected_packets, 

begins as an empty list. It will be populated with the 

packets chosen by the algorithm throughout its 

process. 

Step 3 (Evaluate Solution Completeness). 

The solution is considered complete when all packets 

in the sorted candidate list (sorted_packets) have 

been considered for inclusion, and the algorithm has 

attempted to select the best ones according to its 

strategy. 

Step 4 (Implement Greedy Selection Strategy). 

The selection function is implemented by sorting the 

packets based on deadline_minutes (primary 

priority), followed by estimated_time_in_minute, and 

then weight_in_kg (in ascending order). The for 

packet in sorted_packets: loop then sequentially picks 

the "best" next candidate based on this established 

order. 

 

 

Step 5 (Check Candidate Feasibility). 

The feasibility function verifies whether the packet 

about to be added meets the capacity constraint 

(current_weight + packet['weight_in_kg'] <= 

MAX_CAPACITY_KG), the packet's individual 

deadline constraint 

(potential_absolute_completion_time <= 

packet['deadline_minutes']), and the end-of-day 

constraint (potential_absolute_completion_time <= 

END_OF_DAY_MINUTES). 

Step 6 (Define Optimization Objective). 

The primary objective (Objective Function) of this 

algorithm is to maximize the total_revenue_idr, 

which is calculated based on the total number of 

successfully delivered packages 

(total_packages_delivered). 

 

3. Branch and Bound (B&B) Algorithm 

Step 1 (Initialize Root Node). 

The algorithm starts from the root node 

(current_index = 0), representing an initial state with 

no packets selected (current_weight = 0.0, 

current_cumulative_delivery_time_param = 0, 

current_value_base = 0, and an empty 

current_selected_packets_list). best_overall_value is 

initialized to a minimum value (-1) to track the best 

solution found so far. 

Step 2 (Define Branching Strategy). 

At each node in the search tree (explore_bnb_node), 

the algorithm generates two branches namely include 

branch and exclude branch. Include branch attempts 

to include the current packet (packet) if it satisfies all 

constraints (capacity, deadline, end-of-day). Exclude 

branch skips the current packet. Both branches are 

explored recursively 

(explore_bnb_node(current_index + 1, ...)) until all 

packets have been considered. 

Step 3 (Calculate Upper Bound). 

The calculate_upper_bound function computes an 

optimistic upper bound (upper_bound) on the value 

(revenue) that can potentially be achieved from the 

current node onwards to the end of the tree. This is 

done by greedily adding remaining feasible packets 

based on a simple heuristic (e.g., pay-per-weight). 

Step 4 (Implement Pruning (Bounding) Logic). 

At each node, the calculated upper_bound is 

compared against the best_overall_value found so 

far. If the upper_bound is less than or equal to 

best_overall_value, the branch is pruned (return), as 

it cannot possibly lead to a better solution. This 

significantly reduces the search space. 

Step 5 (Evaluate Solution Node). 

When the algorithm reaches a leaf node 

(current_index == num_packets_global), it signifies 

that a subset of packets has been fully considered. 
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The final revenue (final_revenue) for this subset is 

calculated. If this final_revenue is greater than the 

current best_overall_value, best_overall_value and 

best_overall_selected_packets are updated. 

Step 6 (Recursive Exploration). 

The processes of branching, bound calculation, and 

pruning are recursively executed until the entire 

relevant search space has been explored or pruned. 

Upon completion of the recursion, the final optimal 

results (including selected packets, total weight, time, 

and revenue) are returned. 

 

C. Program Implementation to Find The Most Optimal 

Courier’s Revenue 

In this implementation, the project consists of five Python 

files located in the src folder and one JSON file stored in the 

data folder. The core algorithms are separated into three 

modules: bnb_algorithm.py for the Branch and Bound method, 

dp_algorithm.py for the Dynamic Programming approach, and 

greedy_algorithm.py for the Greedy strategy. Supporting 

functions such as data parsing and utility helpers are placed in 

utils.py, while main.py serves as the entry point to execute and 

compare the performance of the algorithms. The dataset, 

packet.json, is located in the data directory and contains 

structured information on the delivery packets, including 

attributes such as weight, size, deadline, and destination. This 

modular organization promotes clarity, maintainability, and 

facilitates experimentation across different algorithmic 

strategies. 

File main.py serves as the primary entry point for the 

Packet Scheduling Algorithm System. It orchestrates the user 

interface, handles loading packet data, and calls the various 

optimization algorithms. Key functions in this file include 

format_minutes_to_hhmm for time conversion, print_results 

for displaying algorithm outputs, and run_algorithm which 

executes the chosen solver. The main program logic is 

encapsulated within the if __name__ == "__main__": block. 

File utils.py contains utility functions used across the 

packet scheduling application. It includes 

parse_time_to_minutes for converting time strings, 

calculate_revenue for computing earnings, and 

load_packet_data for reading and preprocessing packet 

information from a JSON file. 

File greedy_algorithm.py implements the Greedy 

algorithm for the packet scheduling problem. Its main 

function, solve_greedy, sorts packets based on a heuristic 

(earliest deadline, then shortest time, then lightest weight) and 

iteratively selects packets if they fit within current constraints, 

aiming for a locally optimal solution at each step. 

File dp_algorithm.py contains the implementation of the 

Dynamic Programming algorithm. It includes 

print_dp_debug_info for structured debugging output and 

solve_dp, the core function that uses a bitmask approach to 

represent and optimize subsets of packets, finding the globally 

optimal solution. 

File bnb_algorithm.py implements the Branch and Bound 

algorithm, a systematic search technique for optimization 

problems. It includes calculate_upper_bound for estimating 

potential values, explore_bnb_node which recursively 

branches through the solution space, and solve_bnb which 

orchestrates the search. It uses calculated upper bounds to 

prune branches that cannot lead to a better overall solution, 

significantly reducing the search space to find the optimal set 

of packets. 

The implementation includes step-by-step output tracing to 

illustrate how each algorithm progresses through the problem 

space. However, due to the large number of iterations involved 

especially in the Dynamic Programming and Branch and 

Bound approaches that only a limited portion of the trace is 

displayed. Typically, this includes several steps from the 

beginning and a few from the end, providing a representative 

overview of the process without overwhelming the reader with 

excessive detail. This selective logging helps in understanding 

the algorithm's behavior while maintaining readability. For 

more details of the code implementation, it can be accessed at 

the GitHub Repository. 

V. TESTING AND ANALYSIS 

A. Testing 

The following section presents the results of code execution 
testing, which are illustrated through the images below. These 
visuals showcase the outputs produced by each algorithm when 
applied to the dataset, highlighting differences in performance, 
selected packets, total weight, time taken, and overall delivery 
value. 

 

Fig. 1. Load data file (packet.json) 

 

Fig. 2. Run All Algorithms Result Only (part 1) 
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Fig. 3. Run All Algorithms Result Only (part 2) 

 

Fig. 4. Run Greedy Algorithm and The Steps (part 1) 

 

Fig. 5. Run Greedy Algorithm and The Steps (part 2) 

 

Fig. 6. Run Greedy Algorithm and The Steps (part 3) 

 

Fig. 7. Run Dynamic Programming Algorithm and The Steps (part 1) 

 

Fig. 8. Run Dynamic Programming Algorithm and The Steps (part 2) 
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Fig. 9. Run Branch and Bound Algorithm and The Steps (part 1) 

 

Fig. 10. Run Branch and Bound Algorithm and The Steps (part 2) 

B. Testing Explanation 

Testing was held on a packet scheduling algorithm 
application to evaluate the performance of three primary 
approaches: Greedy, Dynamic Programming (DP), and Branch 
and Bound (B&B). The packet data, comprising 25 individual 
packets, was successfully loaded from data/packet.json as input 
for all test runs. 

The Greedy Algorithm successfully delivered 5 packages, 
resulting in a total weight of 19.41 kg. The total time spent was 
60 minutes, yielding a revenue of Rp 25,000. The absolute 
final completion time was determined to be 09:00. In contrast, 
the Dynamic Programming Algorithm demonstrated markedly 
superior performance, with 9 packages delivered and a total 
weight of 19.01 kg. This process consumed 95 minutes and 
generated a substantial revenue of Rp 45,000, with an absolute 
completion time of 09:35. Similarly, the Branch and Bound 

Algorithm achieved comparable optimal results, delivering 9 
packages with a total weight of 19.96 kg. It also required 95 
minutes to complete, resulting in the same maximum revenue 
of Rp 45,000, and an absolute completion time of 09:35. Based 
on these findings, it is evident that both the Dynamic 
Programming and Branch and Bound algorithms consistently 
attained the optimal solution with maximum revenue, 
significantly outperforming the Greedy approach which yielded 
considerably lower revenue. 

The Greedy Algorithm commenced by sorting packets 
primarily by their deadline, then by estimated time, and finally 
by weight. The iterative process involved sequentially 
considering each sorted packet. For instance, in Iteration 1, 
PKT024 was selected, increasing the current time to 500 
minutes and the current weight to 13.10 kg. However, as the 
debugging output illustrates, several packets (e.g., PKT008, 
PKT004, PKT010, PKT019) were skipped due to violating the 
maximum weight constraint (Max Capacity=20 kg). This 
demonstrates the inherent "locally optimal" decision-making of 
the greedy approach, which may, at times, preclude reaching a 
globally optimal solution. 

The Dynamic Programming Algorithm initiated its process 
with the careful initialization of its DP table. Specifically, 
dp[0], representing an empty set of packets, was assigned a 
completion time of 480 minutes and a weight of 0.00 kg. The 
algorithm then proceeded to iterate through binary masks, each 
corresponding to a unique subset of packets. During these 
iterations, the DP table was systematically updated, 
progressively constructing optimal solutions by building upon 
smaller subsets. A crucial aspect of this process was the 
continuous tracking and updating of the "Best overall revenue." 
This mechanism ensured that any mask yielding a higher total 
revenue would lead to an update in the global optimal, 
effectively navigating the solution space towards the maximum 
possible revenue. The final optimal solution identified by this 
method was marked by a Best Mask of 
000010001110101001100010 (Decimal: 584290), confirming a 
Maximum Revenue of 45,000 IDR. 

The Branch and Bound Algorithm began its execution by 
initializing and sorting the packets, similar to the Greedy 
algorithm, based on criteria like deadline, estimated time, and 
weight. The debugging output comprehensively illustrated the 
"Starting recursive exploration from the root node." This 
iterative process involved exploring various nodes, calculating 
the current revenue base, and dynamically determining upper 
bounds. A key efficiency feature, "Pruning branch" messages, 
clearly indicated instances where branches of the search tree 
were systematically eliminated. This pruning occurred when 
the upper bound of a given branch was found to be less than or 
equal to the "Best Overall Value so far," thereby significantly 
reducing the computational load by discarding non-promising 
paths. The successful completion of the search was confirmed 
by the message "B&B Search completed. Final Optimal 
Solution," which ultimately converged on the same optimal 
revenue of Rp 45,000, aligning with the results from the 
Dynamic Programming approach. 
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C. Algorithm and Method Analysis 

 The Greedy Algorithm demonstrated remarkably fast 
execution times, notably 0.08 ms and 2.29 ms in different test 
runs. This efficiency is inherent in its design. The primary 
computational bottleneck for the Greedy algorithm often lies in 
the initial sorting step. If N is the number of packets, sorting 
typically takes O(NlogN) time. The subsequent iterative 
selection process involves a single pass through the sorted 
packets, leading to an O(N) operation. Therefore, the overall 
time complexity of the Greedy algorithm is dominated by the 
sorting step, making it O(NlogN). This explains its rapid 
performance, though it comes at the cost of not guaranteeing a 
globally optimal solution. 

The Dynamic Programming Algorithm exhibited 
significantly longer execution times, recorded at 10065.59 ms 
and 10871.05 ms. This considerable increase in time is 
expected due to its exhaustive exploration of subproblems to 
guarantee optimality. For problems like the knapsack problem 
(which packet scheduling often resembles), where the total 
number of items is N, the Dynamic Programming approach 
typically involves constructing a table that considers all 
possible subsets of items or all possible states up to a certain 
capacity. In the context of selecting subsets of packets, the 
algorithm often iterates through all 2N possible subsets 
(represented by binary masks). For each subset, operations 
involving weight and time calculations are performed. 
Consequently, the time complexity of a typical Dynamic 
Programming solution for this type of problem is O(2N⋅W) or 
O(2N⋅N), where W is related to the maximum capacity or N is 
for iterating over items within subsets. Given the 25 packets, 
225 is a very large number, explaining the long execution times 
observed, despite achieving the optimal solution. 

The Branch and Bound Algorithm presents an interesting 
case in terms of execution time. While it also aims for an 
optimal solution like Dynamic Programming, its performance 
can vary widely based on the effectiveness of its pruning 
strategy. In the tests conducted, the recorded execution times 
were notably fast, at 0.53 ms and 2.99 ms, comparable to, or 
even faster than, the Greedy algorithm in some instances. This 
indicates that the pruning mechanism was highly effective in 
drastically reducing the search space for the given dataset. In 
the worst-case scenario, Branch and Bound can still explore the 
entire solution space, leading to a complexity of O(2N), similar 
to exhaustive search or some DP approaches. However, in 
practice, with effective bounding and pruning heuristics, its 
average-case performance can be significantly better, often 
performing much closer to polynomial time complexity for 
many real-world instances. The observed quick execution times 
suggest that many non-optimal branches were efficiently 
discarded, allowing it to find the optimal solution without fully 
exploring the exponential search space. This makes Branch and 
Bound a powerful technique for achieving optimality with 
potentially better average-case performance than pure Dynamic 
Programming for specific problem instances. 

 

VI. CONCLUSION 

The implementation and testing of the Greedy, Dynamic 
Programming, and Branch and Bound algorithms for packet 
scheduling revealed a clear trade-off between computational 
efficiency and solution optimality. While the Greedy algorithm 
offered exceptionally fast execution times (e.g., 0.08 ms) due to 
its O(NlogN) complexity, its "locally optimal" decision-making 
led to sub-optimal revenue (Rp 25,000) and fewer packages 
delivered. Conversely, both the Dynamic Programming and 
Branch and Bound algorithms consistently achieved the 
optimal solution, yielding the maximum revenue of Rp 45,000 
and delivering 9 packages. Although Dynamic Programming 
incurred significantly longer execution times (over 10 seconds) 
reflecting its O(2N) complexity, the Branch and Bound 
algorithm remarkably managed to achieve the same optimal 
results with very rapid execution (as low as 0.53 ms), 
demonstrating the powerful impact of its pruning heuristics in 
efficiently navigating the exponential search space. This 
suggests that for complex optimization problems where 
optimality is paramount, Branch and Bound can provide an 
effective balance between solution quality and practical 
performance. 

VII. APPENDIX 

VIDEO LINK AT YOUTUBE 

Youtube link: https://youtu.be/Kzd3rwgAcHs  

CODE REPOSITORY AT GITHUB 

Github Repository link: 
https://github.com/shanlie20/packet_scheduling 
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