
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Implementation of Dynamic Programming,

Greedy, and Branch and Bound Algorithms for

Courier Package Scheduling with

Capacity and Deadline Constraints

Shannon Aurellius Anastasya Lie - 13523019

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13523019@std.stei.itb.ac.id, shannonlie23@gmail.com

Abstract— Efficient scheduling of courier packages is an

essential part in modern logistics but remains challenging due to

limitations such as vehicle capacity and tight delivery deadlines.

Conventional approaches often fail to sufficiently balance these

factors, resulting in inefficiencies and higher operational costs.

Efficient scheduling can be applied by using Dynamic

Programming, Greedy, and Branch and Bound Algorithm to

enhance courier scheduling within these constraints. Their

effectiveness is assessed through simulations on various datasets,

focusing on scalability, solution quality, and computational

demands.

Keywords—courier scheduling, Dynamic Programming, Greedy

Algorithm, Branch and Bound Algorithm, capacity constraints,

deadline constraints, optimization.

I. INTRODUCTION

In recent years, the logistics and courier delivery segment
has seen rapid growth, driven by the expanding dependence on
e-commerce and computerized retail. With the surge in online
transactions, courier companies are expected to deliver a
massive number of packages each day under strict time
constraints. The complexity of the issue increases when each
delivery must not only meet a due date but also consider the
capacity limitations of the available vehicles. Efficient
scheduling of courier deliveries where each package has a goal,
deadline, and size thus becomes a critical issue to solve,
especially as failure to do so can lead to late deliveries,
underutilized armadas, and increased operational costs.

Courier scheduling tasks fall under the broader umbrella of
combinatorial optimization issues, where a solution must be
chosen from a limited but extremely huge set of possibilities.
Such issues are typically NP-hard in nature, meaning that
finding the exact optimal solution within a reasonable time
frame is computationally expensive, especially as the number
of deliveries and constraints increase. To overcome this,
various algorithmic strategies have been proposed that attempt
to supply optimal or near-optimal solutions efficiently.

This paper proposes three approaches to optimizing the
courier’s revenue by applying Dynamic Programming (DP),
Greedy, and Branch and Bound (B&B) algorithms. Each has
different strengths and weaknesses depending on the nature of
the problem.

Dynamic Programming provides a more structured and
reliable way to solve optimization problems that exhibit
optimal substructure and overlapping subproblems with two
key properties in many scheduling scenarios. By solving
smaller subproblems and storing their solutions, DP avoids
redundant computations and ensures optimal results for certain
classes of problems. In the context of courier scheduling, it can
be used to determine the best combination of packages that
maximize delivery within capacity and time limits[1].

Branch and Bound is an algorithm that systematically
explores all possible configurations of solutions using a tree
structure. It evaluates partial solutions and prunes branches of
the tree that cannot possibly lead to better outcomes than the
current best. While this method is capable of finding the
optimal solution, its performance is highly dependent on the
quality of the bounding and branching strategies used. For
large problem sizes, it can become computationally intensive,
although it guarantees correctness where heuristic or greedy
methods may fail[2].

These different characteristics become essential to analyse
which approach is most appropriate under what conditions.
This paper focuses on implementing and comparing these three
algorithms Dynamic Programming, Greedy, and Branch and
Bound for solving a constrained courier package scheduling
problem, where each delivery has a specific deadline and size,
and each courier has limited capacity. The goal is to determine
how each algorithm performs in terms of solution quality,
execution time, and scalability, and to explore the trade-offs
between computational cost and scheduling effectiveness in
realistic delivery scenarios.

mailto:13523019@std.stei.itb.ac.id
mailto:shannonlie23@gmail.com

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

II. LIMITATION

This paper has several limitations that should be
acknowledged. Due to the computational complexity of
Dynamic Programming and Branch and Bound algorithms, the
implementation is limited to handling only a single delivery
trip. Supporting multiple trips would extremely expand the
solution space and lead to excessive processing time. As a
result, the number of packages was restricted to 25 to maintain
reasonable performance. Additionally, the dataset used in this
paper is entirely synthetic and based on simulations, not
derived from real-world logistics operations, which may limit
the external validity of the results. The scheduling is also
confined to a working hour range from 08:00 to 18:00, with a
maximum vehicle load capacity of 20 kg. These constraints
reduce the scalability and practical applicability of the
proposed method in more complex and realistic delivery
settings.

III. THEORITICAL BASIS

A. Dynamic Programming

Dynamic programming is a problem-solving method that
works by breaking down the solution into a series of stages.
Each stage represents a step in the decision-making process,
where the overall solution is viewed as a sequence of
interconnected decisions. The term “program” in this context
has no relation to computer programming. The word
“dynamic” refers to the use of tables, often growing
incrementally to store computed results and optimize the
calculation process. Dynamic programming is particularly
useful for solving optimization problems, whether they involve
maximization or minimization objectives. In these problems,
the solution typically involves evaluating multiple possible
sequences of decisions.[3]

An optimal sequence of decisions in dynamic programming
is derived based on the Principle of Optimality, which states
that if a total solution is optimal, then any part of that solution
leading up to a certain stage must also be optimal. This
principle allows computations to move forward efficiently:
when progressing from stage k to stage k+1, the algorithm can
use the optimal results of stage k without having to recompute
earlier stages. The cost at stage k+1 is defined as the cost
obtained at stage k, plus the cost of transitioning from stage k to
stage k+1 (denoted as cₖ,ₖ₊₁).[3]

Dynamic programming is widely applied in various fields
to solve complex problems efficiently. Some prominent
examples include determining the shortest path in a graph,
solving the Integer Knapsack Problem to maximize value
underweight constraints, addressing Capital Budgeting
problems for optimal investment decisions under limited
budgets, and tackling the Travelling Salesperson Problem
(TSP), which aims to find the shortest possible route that visits
a set of cities exactly once and returns to the origin. These
problems share key characteristics such as overlapping
subproblems and optimal substructure that make them well-
suited to dynamic programming techniques.[4]

There are several characteristics of problems that are
solvable with Dynamic Programming:

1. The problem can be divided into multiple stages, with
only one decision made at each stage.

2. Each stage contains several states associated with that
stage. Generally, a state represents the possible input
configurations at a stage.

3. The result of the decision taken at a stage transforms
the current state into a state at the next stage.

4. The cost at each stage increases steadily with the
number of stages.

5. The cost at a given stage depends on the cumulative
cost of the preceding stages and the cost of moving to
the next stage.

6. There is a recursive relationship that determines the
best decision for each state at stage k, which yields the
best decision for each state at stage k+1.

7. The principle of optimality applies to the problem.[3]

Dynamic programming has two general approaches:
forward (or top-down) and backward (or bottom-up). In the
forward approach, calculations are performed starting from
stage 1, progressing through stages 2, 3, and so on up to stage
n. The decision variables in this sequence are represented as x₁,
x₂, ..., xₙ. In the backward approach, the algorithm starts from
the final stage and moves in reverse order: from stage n to n–1,
n–2, and eventually to stage 1. The sequence of decision
variables in this case is xₙ, xₙ₋₁, ..., x₁.[3]

To solve a solvable problem, there are a few steps in
developing Dynamic Programming Algorithm:

1. Characterize the structure of the optimal solution that
identify the stages, decision variables, states, etc.

2. Define the value of the optimal solution recursively
that express the optimal value of a stage in terms of the
previous stages.

3. Compute the optimal value either forward or backward
that use a table to store intermediate results.

4. Reconstruct the optimal solution (optional) to perform
a backward trace to identify the decision path taken.[3]

B. Greedy Algorithm

The greedy algorithm is one of the most popular and
straightforward methods for solving optimization problems.
This algorithm is typically used to find optimal solutions in
such problems, which can be classified into two types:
maximization and minimization. The greedy algorithm solves
problems in a step-by-step manner by selecting the best option
available at each stage without considering future
consequences (following the principle of “take what you can
get now!”), with the hope that choosing a local optimum at
every step will ultimately lead to a global optimum.[5]

There are several elements of Greedy Algorithm:

1. Candidate set (C) that contains the potential candidates
to be selected at each step (e.g., nodes/edges in a
graph, jobs, tasks, coins, items, characters, etc.).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

2. Solution set (S) that consists of candidates that have
already been selected to form the current solution.

3. Solution function that determines whether the current
set of selected candidates forms a complete and valid
solution.

4. Selection function that chooses the next candidate to
add to the solution based on a specific greedy strategy.
This strategy is heuristic in nature.

5. Feasibility function that checks whether a selected
candidate can be feasibly added to the solution set (i.e.,
whether it satisfies the problem's constraints).

6. Objective function that defines the goal to be
optimized either maximized or minimized.[5]

It’s important to note that greedy algorithms generally
produce locally optimal solutions, which do not always
guarantee globally optimal results. In many cases, the solution
may only be sub-optimal or even a pseudo-optimum. This
happens for several reasons. First, greedy algorithms do not
exhaustively explore all possible solutions like exhaustive
search methods do. Second, there may be multiple selection
functions available for a given problem, and choosing the
correct one is crucial for achieving an optimal solution.[5]

As a result, greedy algorithms may not always yield the
best possible outcome for every problem. However, they are
often valuable for finding approximate solutions, especially
when an exact solution would require exponential computation
time. While a greedy approach may not find the absolute
minimum-weight tour, it can still produce a reasonably good
approximation of the optimal solution. In cases where the
greedy algorithm does provide an optimal solution, its
optimality must be proven mathematically. This can be
challenging, and in many situations, it is easier to demonstrate
that a greedy algorithm is not always optimal by providing a
counterexample that a specific case where the solution it
produces is clearly not the best.[5]

Greedy algorithms are widely used to solve various
optimization problems. Common examples include the coin
exchange problem, activity selection, and minimizing time in a
system. They are also applied to the knapsack problem, job
scheduling with deadlines, minimum spanning tree, shortest
path, Huffman coding, and the Egyptian fraction problem.
These problems benefit from greedy strategies that make
locally optimal choices in hopes of finding an efficient overall
solution.[5]

C. Branch and Bound Algorithm

The Branch and Bound (B&B) algorithm is used for
solving optimization problems, either to minimize or maximize
an objective function without violating any of the given
constraints. Conceptually, Branch and Bound can be viewed as
a combination of Breadth-First Search (BFS) and least-cost
search. In pure BFS, the next node to be expanded is chosen
based on the order in which it was generated (i.e., using a FIFO
queue). However, in Branch and Bound, each node is assigned
a cost value, denoted as ĉ(i), which represents an estimate of
the minimum possible path cost to a goal node passing through

node i. The next node selected for expansion is not based on
generation order, but rather the node with the smallest
estimated cost which is the essence of the least-cost search in
the context of minimization problems.[6]

In solving optimization problems, each node in the state-
space tree must have a mechanism to determine a bound on the
best possible value of the objective function for any potential
solution formed by extending the partial solution represented
by that node. This includes keeping track of the best solution
value found so far, to compare against new candidates.[6]

Branch and Bound also incorporate pruning techniques to
discard paths that are unlikely to lead to an optimal solution. In
general, pruning is applied when a node’s cost is worse than
the best-known solution, when the node violates problem
constraints, or when the node represents a complete solution (a
leaf node) but offers a worse outcome than the current best. In
such cases, the node is eliminated from further consideration.[7]

In most real-world problems, the exact location of the
solution node is unknown. Some problems where the solution
location is better defined include the N-Queens problem,
Knapsack problem, Graph Coloring, 8-puzzle game, and
Travelling Salesperson Problem (TSP). For such cases, the cost
or bound ĉ(i) of a node i serves as a heuristic estimate of the
cheapest cost to reach a solution from node i. This estimate,
ĉ(i), represents the lower bound of the cost required to
complete a solution from that state. Branch and Bound has
been effectively applied in a variety of problems, such as the
N-Queens problem, 15-puzzle, Travelling Salesperson Problem
(TSP), Assignment Problem, and Integer Knapsack Problem.
[6,7,8,9]

There are a few steps to use Branch and Bound Algorithm:

1. Start from the root node. If the root node is a solution,
stop. The solution has been found.

2. If there are no live nodes left, terminate the process (no
solution found).

3. Select a live node with the smallest cost bound (ĉ) as
the next node to expand. If there are multiple nodes
with equal cost, choose one arbitrarily.

4. If the selected node is a solution node, compare its
objective function value with the best solution found so
far. If it is better, update the best solution. If only one
solution is needed, stop.

5. If the selected node is not a solution, generate all of its
children (expanding the node).

6. For each child node, compute its cost bound ĉ, and
mark it as a live node.

7. Return to Step 2. [6]

Notes: The "live nodes" are typically maintained in a list or
priority queue sorted by cost, but the algorithm itself
doesn't prescribe a specific data structure, this depends on
implementation. Pruning is applied to eliminate nodes
whose cost bound is worse than the best solution found so
far or that violate constraints. [6]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

D. The Differences Between Dynamic Programming (DP),

Greedy, and Branch and Bound (B&B) Algorithm

TABLE I. THE DIFFERENCES BETWEEN DYNAMIC PROGRAMMING (DP),
GREEDY, AND BRANCH AND BOUND (B&B) ALGORITHM

Aspect DP Greedy B&B

Problem

Type

Optimization

with overlapping

subproblems and
optimal

substructure

Optimization

with greedy-

choice property
and optimal

substructure

Optimization

(esp.

combinatorial
and constrained)

Approach Bottom-up or
top-down with

memoization

Step-by-step,
always takes

locally optimal

choice

Tree-based
search with

pruning and

bounding

Solution
Guarantee

Always finds
optimal solution

(if correctly

applied)

Often
approximate;

not always

optimal

Guaranteed to
find optimal

solution (with

full exploration
or correct bound)

Exploration

Strategy

Exhaustive (but

optimized via
memoization)

Single path (no

backtracking)

Selective

exploration
based on best

bound (e.g., best-

first search)

Subproblem
Reuse

Yes No No

Constraint

Handling

Limited, usually

assumes relaxed
constraints

Limited, must

fit greedy
criteria

Strong – handles

constraints
explicitly

Speed Fast

(polynomial) for
suitable

problems

Very fast (linear

or greedy-
specific)

Slower – may be

exponential in
worst case

Space

Usage

Can be high

(stores table of
subproblems)

Low Moderate to high

(stores tree
nodes + bounds)

E. Package

A package refers to a specific quantity of goods prepared
for shipment. Rather than being transported individually, items
are grouped together using loading platforms such as pallets,
crates, wire mesh containers, or roller cages to form a single
unit. Each package typically requires its own shipping
document and is assigned a unique identifier for tracking and
tracing throughout the delivery process. In real-world
applications, the term package is often used interchangeably
with parcel or packet. Using external packaging and handling
aids, multiple individual packaging units can be consolidated
into a complete package. In this context, the package also
functions as the shipping unit.[10]

F. Courier

Based on Cambridge Dictionary Online, courier is a person

or company that takes messages, letters, or parcels from one

person or place to another.[11]

G. Scheduling

Based on Cambridge Dictionary Online, scheduling is the

job or activity of planning the times at which particular tasks

will be done or events will happen such as

production/work/crew scheduling.[12]

IV. METHODOLOGY

A. Data Sample

The dataset used in this study is synthetically generated and
formatted in JSON to simulate a controlled yet realistic packet
delivery scenario. It comprises 25 distinct delivery entries,
deliberately limited in size to accommodate the computational
complexity of the algorithms applied namely, Dynamic
Programming (DP) and Branch and Bound (B&B). Both
techniques are known for their ability to solve optimization
problems effectively, but they come with substantial
computational overhead, especially as the problem size grows.
Dynamic Programming requires building and maintaining large
state tables, while Branch and Bound involves exploring a
potentially large solution space with bounding and pruning
operations. Therefore, a dataset size of 25 was chosen as a
practical upper limit to ensure that algorithm performance
could be analyzed within reasonable runtime and resource
constraints, without sacrificing the complexity needed for
meaningful evaluation.

Each data entry is uniquely identified by a packet_id and
contains several key fields relevant to delivery operations. The
weight_in_kg ranges from 0.5 kg to 15 kg, reflecting realistic
load variations. The deadline_time spans from 08:00 to 18:00,
simulating typical same-day delivery windows. Packet sizes are
classified as small, medium, or large, which influence the
estimated_time_in_minute required for delivery—10 minutes
for small packets, 15 for medium, and 20 for large ones.
Additionally, each packet is assigned a destination_address,
which consists of randomly generated addresses within the
Dago area of Bandung, emphasizing a localized delivery
scenario ideal for route planning and schedule optimization.
This structured and semantically rich dataset supports detailed
experimentation on time-constrained delivery scheduling,
vehicle load balancing, and the effectiveness of the selected
algorithms in addressing logistics challenges under controlled
conditions.

TABLE II. PACKET.SON’S PREVIEW

JSON’s Preview

[
 {

 "packet_id": "PKT001",

 "weight_in_kg": 7.35,
 "deadline_time": "16:30",

 "size": "medium",

 "estimated_time_in_minute": 15,
 "destination_address": "Jl. Teuku Umar No.12, Dago"

 },

 // ... (23 additional data entries omitted for brevity) ...
 {

 "packet_id": "PKT025",

 "weight_in_kg": 2.30,
 "deadline_time": "17:30",

 "size": "small",

 "estimated_time_in_minute": 10,
 "destination_address": "Jl. Pagergunung No.30, Dago"

 }

]

This table displays the structure and key attributes of the
packet.json the data used in this study. For full dataset details,
please refer to folder data at GitHub Repository.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Problem Modeling

1. Dynamic Programming (DP)

Step 1 (Characterize the Optimal Solution).

The solution is modeled by representing each

delivery combination as a bitmask. States represent

subsets of delivered packets, and decision variables

involve selecting which packet to add next.

Constraints like weight limit and delivery deadlines

define feasible transitions.

Step 2 (Define the Recursive Relation).

A DP table dp[mask] is initialized where each entry

holds (completion_time, total_weight) for a given

subset of packets. The base case (dp[0]) is set to the

start of the delivery time. Other states are built by

extending smaller subsets and updating values based

on feasibility and improvement.

Step 3 (Compute Using Table Iteration).

The algorithm iterates through all subsets (mask) and

their possible additions. It checks constraints (weight,

deadline, total time) and updates dp[mask] if a better

completion time or efficiency is achieved. This uses a

bottom-up approach to reuse previously computed

results.

Step 4 (Reconstruct the Optimal Solution).

After computing all values, the algorithm finds the

best subset (best_mask) with the highest delivery

value. It then traces back to identify the packets

involved. The output includes delivery count, weight,

time, and total revenue.

2. Greedy Algorithm

Step 1 (Define Candidate Set).

The candidate set (C) is the initial collection of all

available packets (packets), which are potential

elements to be selected and considered for the

solution.

Step 2 (Initialize Solution Set).

The solution set (S), represented by selected_packets,

begins as an empty list. It will be populated with the

packets chosen by the algorithm throughout its

process.

Step 3 (Evaluate Solution Completeness).

The solution is considered complete when all packets

in the sorted candidate list (sorted_packets) have

been considered for inclusion, and the algorithm has

attempted to select the best ones according to its

strategy.

Step 4 (Implement Greedy Selection Strategy).

The selection function is implemented by sorting the

packets based on deadline_minutes (primary

priority), followed by estimated_time_in_minute, and

then weight_in_kg (in ascending order). The for

packet in sorted_packets: loop then sequentially picks

the "best" next candidate based on this established

order.

Step 5 (Check Candidate Feasibility).

The feasibility function verifies whether the packet

about to be added meets the capacity constraint

(current_weight + packet['weight_in_kg'] <=

MAX_CAPACITY_KG), the packet's individual

deadline constraint

(potential_absolute_completion_time <=

packet['deadline_minutes']), and the end-of-day

constraint (potential_absolute_completion_time <=

END_OF_DAY_MINUTES).

Step 6 (Define Optimization Objective).

The primary objective (Objective Function) of this

algorithm is to maximize the total_revenue_idr,

which is calculated based on the total number of

successfully delivered packages

(total_packages_delivered).

3. Branch and Bound (B&B) Algorithm

Step 1 (Initialize Root Node).

The algorithm starts from the root node

(current_index = 0), representing an initial state with

no packets selected (current_weight = 0.0,

current_cumulative_delivery_time_param = 0,

current_value_base = 0, and an empty

current_selected_packets_list). best_overall_value is

initialized to a minimum value (-1) to track the best

solution found so far.

Step 2 (Define Branching Strategy).

At each node in the search tree (explore_bnb_node),

the algorithm generates two branches namely include

branch and exclude branch. Include branch attempts

to include the current packet (packet) if it satisfies all

constraints (capacity, deadline, end-of-day). Exclude

branch skips the current packet. Both branches are

explored recursively

(explore_bnb_node(current_index + 1, ...)) until all

packets have been considered.

Step 3 (Calculate Upper Bound).

The calculate_upper_bound function computes an

optimistic upper bound (upper_bound) on the value

(revenue) that can potentially be achieved from the

current node onwards to the end of the tree. This is

done by greedily adding remaining feasible packets

based on a simple heuristic (e.g., pay-per-weight).

Step 4 (Implement Pruning (Bounding) Logic).

At each node, the calculated upper_bound is

compared against the best_overall_value found so

far. If the upper_bound is less than or equal to

best_overall_value, the branch is pruned (return), as

it cannot possibly lead to a better solution. This

significantly reduces the search space.

Step 5 (Evaluate Solution Node).

When the algorithm reaches a leaf node

(current_index == num_packets_global), it signifies

that a subset of packets has been fully considered.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The final revenue (final_revenue) for this subset is

calculated. If this final_revenue is greater than the

current best_overall_value, best_overall_value and

best_overall_selected_packets are updated.

Step 6 (Recursive Exploration).

The processes of branching, bound calculation, and

pruning are recursively executed until the entire

relevant search space has been explored or pruned.

Upon completion of the recursion, the final optimal

results (including selected packets, total weight, time,

and revenue) are returned.

C. Program Implementation to Find The Most Optimal

Courier’s Revenue

In this implementation, the project consists of five Python

files located in the src folder and one JSON file stored in the

data folder. The core algorithms are separated into three

modules: bnb_algorithm.py for the Branch and Bound method,

dp_algorithm.py for the Dynamic Programming approach, and

greedy_algorithm.py for the Greedy strategy. Supporting

functions such as data parsing and utility helpers are placed in

utils.py, while main.py serves as the entry point to execute and

compare the performance of the algorithms. The dataset,

packet.json, is located in the data directory and contains

structured information on the delivery packets, including

attributes such as weight, size, deadline, and destination. This

modular organization promotes clarity, maintainability, and

facilitates experimentation across different algorithmic

strategies.

File main.py serves as the primary entry point for the

Packet Scheduling Algorithm System. It orchestrates the user

interface, handles loading packet data, and calls the various

optimization algorithms. Key functions in this file include

format_minutes_to_hhmm for time conversion, print_results

for displaying algorithm outputs, and run_algorithm which

executes the chosen solver. The main program logic is

encapsulated within the if __name__ == "__main__": block.

File utils.py contains utility functions used across the

packet scheduling application. It includes

parse_time_to_minutes for converting time strings,

calculate_revenue for computing earnings, and

load_packet_data for reading and preprocessing packet

information from a JSON file.

File greedy_algorithm.py implements the Greedy

algorithm for the packet scheduling problem. Its main

function, solve_greedy, sorts packets based on a heuristic

(earliest deadline, then shortest time, then lightest weight) and

iteratively selects packets if they fit within current constraints,

aiming for a locally optimal solution at each step.

File dp_algorithm.py contains the implementation of the

Dynamic Programming algorithm. It includes

print_dp_debug_info for structured debugging output and

solve_dp, the core function that uses a bitmask approach to

represent and optimize subsets of packets, finding the globally

optimal solution.

File bnb_algorithm.py implements the Branch and Bound

algorithm, a systematic search technique for optimization

problems. It includes calculate_upper_bound for estimating

potential values, explore_bnb_node which recursively

branches through the solution space, and solve_bnb which

orchestrates the search. It uses calculated upper bounds to

prune branches that cannot lead to a better overall solution,

significantly reducing the search space to find the optimal set

of packets.

The implementation includes step-by-step output tracing to

illustrate how each algorithm progresses through the problem

space. However, due to the large number of iterations involved

especially in the Dynamic Programming and Branch and

Bound approaches that only a limited portion of the trace is

displayed. Typically, this includes several steps from the

beginning and a few from the end, providing a representative

overview of the process without overwhelming the reader with

excessive detail. This selective logging helps in understanding

the algorithm's behavior while maintaining readability. For

more details of the code implementation, it can be accessed at

the GitHub Repository.

V. TESTING AND ANALYSIS

A. Testing

The following section presents the results of code execution
testing, which are illustrated through the images below. These
visuals showcase the outputs produced by each algorithm when
applied to the dataset, highlighting differences in performance,
selected packets, total weight, time taken, and overall delivery
value.

Fig. 1. Load data file (packet.json)

Fig. 2. Run All Algorithms Result Only (part 1)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 3. Run All Algorithms Result Only (part 2)

Fig. 4. Run Greedy Algorithm and The Steps (part 1)

Fig. 5. Run Greedy Algorithm and The Steps (part 2)

Fig. 6. Run Greedy Algorithm and The Steps (part 3)

Fig. 7. Run Dynamic Programming Algorithm and The Steps (part 1)

Fig. 8. Run Dynamic Programming Algorithm and The Steps (part 2)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 9. Run Branch and Bound Algorithm and The Steps (part 1)

Fig. 10. Run Branch and Bound Algorithm and The Steps (part 2)

B. Testing Explanation

Testing was held on a packet scheduling algorithm
application to evaluate the performance of three primary
approaches: Greedy, Dynamic Programming (DP), and Branch
and Bound (B&B). The packet data, comprising 25 individual
packets, was successfully loaded from data/packet.json as input
for all test runs.

The Greedy Algorithm successfully delivered 5 packages,
resulting in a total weight of 19.41 kg. The total time spent was
60 minutes, yielding a revenue of Rp 25,000. The absolute
final completion time was determined to be 09:00. In contrast,
the Dynamic Programming Algorithm demonstrated markedly
superior performance, with 9 packages delivered and a total
weight of 19.01 kg. This process consumed 95 minutes and
generated a substantial revenue of Rp 45,000, with an absolute
completion time of 09:35. Similarly, the Branch and Bound

Algorithm achieved comparable optimal results, delivering 9
packages with a total weight of 19.96 kg. It also required 95
minutes to complete, resulting in the same maximum revenue
of Rp 45,000, and an absolute completion time of 09:35. Based
on these findings, it is evident that both the Dynamic
Programming and Branch and Bound algorithms consistently
attained the optimal solution with maximum revenue,
significantly outperforming the Greedy approach which yielded
considerably lower revenue.

The Greedy Algorithm commenced by sorting packets
primarily by their deadline, then by estimated time, and finally
by weight. The iterative process involved sequentially
considering each sorted packet. For instance, in Iteration 1,
PKT024 was selected, increasing the current time to 500
minutes and the current weight to 13.10 kg. However, as the
debugging output illustrates, several packets (e.g., PKT008,
PKT004, PKT010, PKT019) were skipped due to violating the
maximum weight constraint (Max Capacity=20 kg). This
demonstrates the inherent "locally optimal" decision-making of
the greedy approach, which may, at times, preclude reaching a
globally optimal solution.

The Dynamic Programming Algorithm initiated its process
with the careful initialization of its DP table. Specifically,
dp[0], representing an empty set of packets, was assigned a
completion time of 480 minutes and a weight of 0.00 kg. The
algorithm then proceeded to iterate through binary masks, each
corresponding to a unique subset of packets. During these
iterations, the DP table was systematically updated,
progressively constructing optimal solutions by building upon
smaller subsets. A crucial aspect of this process was the
continuous tracking and updating of the "Best overall revenue."
This mechanism ensured that any mask yielding a higher total
revenue would lead to an update in the global optimal,
effectively navigating the solution space towards the maximum
possible revenue. The final optimal solution identified by this
method was marked by a Best Mask of
000010001110101001100010 (Decimal: 584290), confirming a
Maximum Revenue of 45,000 IDR.

The Branch and Bound Algorithm began its execution by
initializing and sorting the packets, similar to the Greedy
algorithm, based on criteria like deadline, estimated time, and
weight. The debugging output comprehensively illustrated the
"Starting recursive exploration from the root node." This
iterative process involved exploring various nodes, calculating
the current revenue base, and dynamically determining upper
bounds. A key efficiency feature, "Pruning branch" messages,
clearly indicated instances where branches of the search tree
were systematically eliminated. This pruning occurred when
the upper bound of a given branch was found to be less than or
equal to the "Best Overall Value so far," thereby significantly
reducing the computational load by discarding non-promising
paths. The successful completion of the search was confirmed
by the message "B&B Search completed. Final Optimal
Solution," which ultimately converged on the same optimal
revenue of Rp 45,000, aligning with the results from the
Dynamic Programming approach.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

C. Algorithm and Method Analysis

 The Greedy Algorithm demonstrated remarkably fast
execution times, notably 0.08 ms and 2.29 ms in different test
runs. This efficiency is inherent in its design. The primary
computational bottleneck for the Greedy algorithm often lies in
the initial sorting step. If N is the number of packets, sorting
typically takes O(NlogN) time. The subsequent iterative
selection process involves a single pass through the sorted
packets, leading to an O(N) operation. Therefore, the overall
time complexity of the Greedy algorithm is dominated by the
sorting step, making it O(NlogN). This explains its rapid
performance, though it comes at the cost of not guaranteeing a
globally optimal solution.

The Dynamic Programming Algorithm exhibited
significantly longer execution times, recorded at 10065.59 ms
and 10871.05 ms. This considerable increase in time is
expected due to its exhaustive exploration of subproblems to
guarantee optimality. For problems like the knapsack problem
(which packet scheduling often resembles), where the total
number of items is N, the Dynamic Programming approach
typically involves constructing a table that considers all
possible subsets of items or all possible states up to a certain
capacity. In the context of selecting subsets of packets, the
algorithm often iterates through all 2N possible subsets
(represented by binary masks). For each subset, operations
involving weight and time calculations are performed.
Consequently, the time complexity of a typical Dynamic
Programming solution for this type of problem is O(2N⋅W) or
O(2N⋅N), where W is related to the maximum capacity or N is
for iterating over items within subsets. Given the 25 packets,
225 is a very large number, explaining the long execution times
observed, despite achieving the optimal solution.

The Branch and Bound Algorithm presents an interesting
case in terms of execution time. While it also aims for an
optimal solution like Dynamic Programming, its performance
can vary widely based on the effectiveness of its pruning
strategy. In the tests conducted, the recorded execution times
were notably fast, at 0.53 ms and 2.99 ms, comparable to, or
even faster than, the Greedy algorithm in some instances. This
indicates that the pruning mechanism was highly effective in
drastically reducing the search space for the given dataset. In
the worst-case scenario, Branch and Bound can still explore the
entire solution space, leading to a complexity of O(2N), similar
to exhaustive search or some DP approaches. However, in
practice, with effective bounding and pruning heuristics, its
average-case performance can be significantly better, often
performing much closer to polynomial time complexity for
many real-world instances. The observed quick execution times
suggest that many non-optimal branches were efficiently
discarded, allowing it to find the optimal solution without fully
exploring the exponential search space. This makes Branch and
Bound a powerful technique for achieving optimality with
potentially better average-case performance than pure Dynamic
Programming for specific problem instances.

VI. CONCLUSION

The implementation and testing of the Greedy, Dynamic
Programming, and Branch and Bound algorithms for packet
scheduling revealed a clear trade-off between computational
efficiency and solution optimality. While the Greedy algorithm
offered exceptionally fast execution times (e.g., 0.08 ms) due to
its O(NlogN) complexity, its "locally optimal" decision-making
led to sub-optimal revenue (Rp 25,000) and fewer packages
delivered. Conversely, both the Dynamic Programming and
Branch and Bound algorithms consistently achieved the
optimal solution, yielding the maximum revenue of Rp 45,000
and delivering 9 packages. Although Dynamic Programming
incurred significantly longer execution times (over 10 seconds)
reflecting its O(2N) complexity, the Branch and Bound
algorithm remarkably managed to achieve the same optimal
results with very rapid execution (as low as 0.53 ms),
demonstrating the powerful impact of its pruning heuristics in
efficiently navigating the exponential search space. This
suggests that for complex optimization problems where
optimality is paramount, Branch and Bound can provide an
effective balance between solution quality and practical
performance.

VII. APPENDIX

VIDEO LINK AT YOUTUBE

Youtube link: https://youtu.be/Kzd3rwgAcHs

CODE REPOSITORY AT GITHUB

Github Repository link:
https://github.com/shanlie20/packet_scheduling

ACKNOWLEDGMENT

The author would like to express sincere gratitude to the
following individuals whose support and contributions have
been vital throughout the completion of this paper:

1. To God Almighty, for the continual blessings and

guidance that have provided strength and direction

during every stage of this journey. The author’s faith

has been a constant foundation in overcoming

challenges throughout the writing process.

2. To the author’s parents, for their endless

encouragement, moral support, and belief in the

author’s capabilities. Their unwavering presence and

motivation have been a key factor in sustaining the

author’s dedication and perseverance.

3. To Dr. Ir. Rinaldi Munir, M.T., Dr. Ir. Rila Mandala,

and Dr. Nur Ulfa Maulidevi, for their exceptional

guidance as lecturers of the IF2211 Algorithm

Strategies course. Their mentorship, clarity in

teaching, and deep expertise have played a significant

role in shaping the author's understanding of

algorithmic principles and approaches.

The author is deeply appreciative of the meaningful influence

and assistance provided by these individuals, without whom

this paper would not have reached its final form.

https://youtu.be/Kzd3rwgAcHs
https://github.com/shanlie20/packet_scheduling

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

REFERENCES

[1] CodeCrucks, “Dynamic Programming vs Branch and Bound,”
CodeCrucks.com, [Online]. Available: https://codecrucks.com/dynamic-
programming-vs-branch-and-bound/.

[2] GeeksforGeeks, “Branch and Bound in DSA,” GeeksforGeeks.org,
[Online]. Available: https://www.geeksforgeeks.org/dsa/branch-and-
bound-meaning-in-dsa/.

[3] R. Munir, Program Dinamis (2025) Bagian 1. Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf.

[4] R. Munir, Program Dinamis (2025) Bagian 2. Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-
Program-Dinamis-(2025)-Bagian2.pdf.

[5] R. Munir, Algoritma Greedy (2025) Bagian 1. Institut Teknologi
Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-
Algoritma-Greedy-(2025)-Bag1.pdf.

[6] R. Munir, Algoritma Branch and Bound (2025) Bagian 1. Institut
Teknologi Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-
Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf

[7] R. Munir, Algoritma Branch and Bound (2025) Bagian 2. Institut
Teknologi Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-
Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf

[8] R. Munir, Algoritma Branch and Bound (2025) Bagian 3. Institut
Teknologi Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/19-
Algoritma-Branch-and-Bound-(2025)-Bagian3.pdf

[9] R. Munir, Algoritma Branch and Bound (2025) Bagian 4. Institut
Teknologi Bandung, 2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/20-
Algoritma-Branch-and-Bound-(2025)-Bagian4.pdf

[10] DHL Freight Connections, “Package – Logistics Dictionary,” DHL
Freight Connections, [Online]. Available: https://dhl-freight-
connections.com/en/logistics-dictionary/package/.

[11] Cambridge University Press, “Courier,” Cambridge Dictionary,
[Online]. Available:
https://dictionary.cambridge.org/dictionary/english/courier.

[12] Cambridge University Press, “Scheduling,” Cambridge Dictionary,
[Online]. Available:
https://dictionary.cambridge.org/dictionary/english/scheduling.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Shannon Aurellius Anastasya Lie

13523019

https://codecrucks.com/dynamic-programming-vs-branch-and-bound/
https://codecrucks.com/dynamic-programming-vs-branch-and-bound/
https://www.geeksforgeeks.org/dsa/branch-and-bound-meaning-in-dsa/
https://www.geeksforgeeks.org/dsa/branch-and-bound-meaning-in-dsa/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/04-Algoritma-Greedy-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/19-Algoritma-Branch-and-Bound-(2025)-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/19-Algoritma-Branch-and-Bound-(2025)-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/20-Algoritma-Branch-and-Bound-(2025)-Bagian4.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/20-Algoritma-Branch-and-Bound-(2025)-Bagian4.pdf
https://dhl-freight-connections.com/en/logistics-dictionary/package/
https://dhl-freight-connections.com/en/logistics-dictionary/package/
https://dictionary.cambridge.org/dictionary/english/courier
https://dictionary.cambridge.org/dictionary/english/scheduling

